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1 LARGE CURVATURE RADIUS SITUATION

The SDF mapping function y(¢) can be simplified to y(¢) =
s(t)/] cosO(t)| when the absolute value of the curvature
radius is a very large number. This corresponds to the
situation that the ray intersects with the planar surface. This
approximation comes from the fact that the limit of y(t) is
s(t)/| cosB(t)| as the radius of curvature R(x(t),v) — oo.
We take this approximation when the absolute value of the
curvature radius is large due to limitations in numerical
precision.

Proof. Since a(t) + s(t) = R(x(t),v) >0,
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Without loss of generality, assuming that s > 0, we know
(R — 5)? < R% Then we get,

R%*cos? 0 > R?cos® 0 — R* + (R — 5)%.
Assuming that there is a £ suffice the inequality that

R?cos?0 — R* + (R —s)? < £ < R*cos? 0
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According to Lagrange’s mean value theorem, we get

f(R?cos?0) — f(R*cos® 0 — R* + (R — s)?)
= f"(€)(R* = (R - 5)*)
= ["(&)(2Rs — s?)
Therefore we know that,
lim [f(R*cos®6) — f(R*cos® 0 — R* + (R — s)?)]
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Since we know that
R%*cos?0 — R? + (R — 5)?
= R%cos’># — 2Rs + s> < £ < R*cos? 6
Then & can be denoted as R%cos?6 + o( R?). Here o( R?)
is the lower order infinity of R2.

Finally, we prove the limit of y approaches s/|cosf)|,
which is the same as TUVR [1].
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The proof process is very similar when s < 0 and y also
converge to s/| cos 0| in this situation. O

2 PROGRESSIVELY WARM-UP OF BIAS-AWARE
SDF 1O DENSITY TRANSFORMATION

As aforementioned before, we design the bias-aware SDF to
density transformation in a progressive manner to ensure
the stabilization of training. In this subsection, we conduct
quantitative and qualitative experiments to validate the
efficiency of this design. As shown in Table. 1, the "Non-
Prog” indicates applying the bias-aware SDF to density
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Fig. 1: The qualitative experiments to evaluate the efficiency of the progressive manner in our bias-aware SDF to density
transformation (Sec. 3.5). The “Non-Prog” indicates applying the bias-aware SDF to density transformation without
progressive growing. The progressive manner can make the optimization of thin and detailed structures more stable.

TABLE 1: The quantitative results on the ScaNet dataset.
The “Non-Prog” indicates applying the bias-aware SDF to
density transformation without progressive warm-up, and
the "Prog” indicates our proposed model.

Metrics | Chamfer| F-scoret Normal Ct
Non-Prog 0.042 73.19 89.85
Prog 0.038 78.54 90.21

transformation without progressive warm-up. It can be
observed that this progressive manner achieves significant
improvement by 5.35 F-score.

The qualitative results are shown in Fig. 1. Though ap-
plying the bias-aware SDF to density transformation with-
out the progressive manner can still reconstruct the texture-
less region well, the reconstruction of detailed and small
structures seriously degraded, such as the tables, chairs,
and the curtain. These experimental results prove that the
designed progressive manner can make the training robust.

3 EVALUATING GRADIENT DETACH FOR DEPTH
AND NORMAL PRIOR

We conduct ablation studies on the masked depth loss and
masked normal loss. The masked depth and normal loss
can filter the predicted geometry prior, which makes the
training phase stable since the monocular geometry priors
are not absolutely accurate. So we investigate the effect of
masked depth and normal loss in this section. We disable the
adaptive gradient detach operation based on the uncertainty
map to evaluate the efficiency of our proposed masked
geometry loss function.

TABLE 2: The quantitative results show that the mask-
guided gradient detaching design can slightly improve the
performance because this design mainly influences the thin
and detailed structure, whose proportion in each image is
not significant.

Metrics | Chamfer] F-scoret Normal Ct
W /o0 mask detach 0.0385 78.31 90.17
Ours 0.0382 78.54 90.21

The quantitative and qualitative results are shown in
Table 2 and Fig. 2, respectively. It can be observed that,
though applying the mask-guided gradient detaching loss
can only achieve numerical improvement, the qualitative
improvements are obvious, especially for those thin and
small structures. The reason is that this design mainly aims
to improve the reconstruction of detailed regions, whose
uncertainty score is high. And only occupying a small
area results in little impact on the numerical performance.
The experimental results indicate the effectiveness of our
proposed approach.

4 TIME CONSUMPTION

The time consumed in the training phase of each method
is shown in the Table. 3. Though the implementation of
MonoSDF [2] and our method are both based on the VolSDF
[3], our method consumes more time for training. The
reason is that our model needs to compute the SDF gradient
and uncertainty score of each point at the point sampling
for the opacity estimation. Apply other point sampling
algorithms, such as the sampling based on proposal MLP
[4], may eliminate this negative impact.
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Fig. 2: The ablation studies for evaluating the effectiveness
of detaching the gradients at regions with high uncertainty
scores. It can be observed that detaching the gradients
of geometry with high uncertainty can avoid losing and
damaging some thin and detailed surfaces.

TABLE 3: The time-consuming of different methods. All
methods are implemented on NVIDIA Geforce RTX 2080ti.
The * indicates applying the hash encoding feature grids.

Methods | NeuRIS MonoSDF  Ours | MonoSDF*  Ours*
Times (h) 11 26 31 17 21

5 FAILURE CASE

Only applying the reduction of bias and prior filtering still
cannot solve the reconstruction defect at reflective regions.
We demonstrate the failure case on DTU dataset of our
method without geometry prior in Fig. 3.

Image

Fig. 3: The visualization of a failure case on the DTU
dataset. It demonstrates the reflective regions cannot be
reconstructed perfectly.

6 LICENSE

We include another 7 scenes published by artists on
BlendSwap in numerical evaluation of the ICL-NUIM
dataset [5]. The license information is shown in Table. 4.
We utilize the synthetic mesh and rendered images of each
scene.

Scene URL License
Breakfast room https://blendswap.com/blend /13363 CC-BY
Green room https:/ /blendswap.com/blend /8381 CC-BY
Grey-white room https:/ /blendswap.com/blend /13552 CC-BY
ICL living room | https://www.doc.ic.ac.uk/~ahanda/VaFRIC /iclnuim.html | CC-BY
Morning apart. https:/ /blendswap.com/blend /10350 CC-BY
Kitchen 1 https:/ /blendswap.com/blend /5156 CC-0
Kitchen 2 https:/ /blendswap.com/blend /11801 CC-0
White room https://blendswap.com/blend /5014 CC-BY

TABLE 4: The license information of each scene in the nu-
merical evaluation of the ICL-NUIM dataset [5] and scenes
published by artists.
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